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CONVERGENCE PERFORMANCE OF ADAPTIVE DETECTORS,
PART I

1. INTRODUCTION

The matched filter detector (MFD) is a commonly used in deciding whether a desired signal is
present or not. Figure 1 shows a schematic of the MFD. The output of N sensors is input to the
MFD. If the covariance matrix R, of the inputs x 1, X2 , ... ,XN is known a priori and the desired
signal Lan be represented by the an xv-iengtii vector s, Lthcn the z1atneu iinei weigts usW, a2, I2 ,N

are given by a = R-' s, where a = (a1 , a2 , ... apT and T denotes transpose [1]. The output of
the matched filter is aH x, where x = (x1 ,x 2 ,... ,XN)T and H denotes conjugate transpose. This
output is square-law detected and compared against a threshold. A detection is declared if this thresh-
old is exceeded.

For a known covariance matrix, threshold, and signal-to-noise power ratio, the detection proba-
bility PD and false alarm probability PF have been derived 111. In some applications the covariance
matrix is not known a priori and is estimated. The matched filter weighting is then determined by
using what has been termed the sampled matrix inversion (SMI) algorithm [21. Convergence results
for the output noise power residue of an adaptive matched filter that uses the SMI are given in Refs.
2 to 4.
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I 1 N is_
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Fig. I - Matched filter detector
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KARL GERLACH

Kelly [51 derived an adaptive detector under the Gaussian assumption by using the maximum
likelihooU VVL) estimator for the unknown parameters or the likelihood ratio test, i.e., the unknown
covariance matrix and the unknown signal amplitude. This detection scheme is known as the general-
ized likelihood ratio test il. The desired signal's amplitude was assumed to be nonrandom. Input
data consisted of a primary data vector of length N that might contain the desired signal and a number
Of Ann-on,-A ata ecors that A n *t-.n h signal .Ad -s C....e f t~JiO.At~fl.A tUaw v~t~tlta tJJot uu nJUt t-tLMiitai MOlt dqnH1it, Msiplat 1X,, 1) V)LII4LU ILIiII LLIbC- SWuLO-
dary data vectors by using the SMI algorithm. Reference 5 presents convergence results for PD and
PF. Expressions for PD and PF were derived that are a function of the number of statistically
independent secondary data vectors, the number of input channels N, the detector threshold, and the
input signa-to-noise power ratio . Note that PF did not depend on Rrx (a statistical measure of the
external noise environment). Hence this detector exhibited the desirable constant false alarm rate
(CFAR) property of having the PF be independent of the covariance matrix. References 6 and 7 con-
tain additional research in this area.

Here we consider a different form of CFAR adaptive detection that employs a mean level detec-
tor (MLD) [8,93. For this detection scheme (as in Kelly t51), a fixed number of secondary data vec-
tors that do not contain the desired signal are used to estimate RA. A number of primary data vectors
are processed through the matched filter, and square law is detected. Thereafter, one of the resultant
outputs is selected as a candidate for detection; the remaining output powers are averaged and multi-
plied by an arbitrary number to form the threshold. Also in this report, we address the random
desired signal. In particular, we present results for the Rayleigh target model. Formulas for PD and
PF are derived for what we term as the mean level adaptive detector (MLAD), and again we show
that this detector exhibits the CFAR property of the PF being independent of the input covariance
matrix.

The pertinant assumptions for this analysis are the following:

(1) Input noises are complex zero-mean stationary Gaussian random variables (RV). The real
and imaginary parts of a given input noise sample are independent and are identically dis-
tributed (U1D). An RV with these characteristics is called a circular Gaussian process.

(2) Input noise samples are temporally statistically independent.

(3) The secondary data is statistically independent of the primary data.

(4) The desired signal is present in the candidate primary data vector. It is not in the sec-
ondary data or the primary data vectors used to form the threshold.

Assumptions (1) through (4) were also used in Ref. 5.

2. MEAN LEVEL ADAPTIVE DETECTOR DESCRIPTION (MIAD)

Figure 2 shows a schematic of MLAD. A batch or block of input data (called secondary input
data) is used to calculate the adaptive weights. On each of the N input channels, we measure K tem-
porally independent samples.

2
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SENSORS

IF GREATER, CHOOSE HI

ELSE, CHOOSE Ho

Fig. 2 - Mean level adaptive detector

Define

X = N x K matrix of secondary input data. The nth now represents the K temporally
independent samples on the nth channel. The samples in the kth column are
assumed to be time-coincident;

s = desired steering vector of length N; and

, = N x N estimated the input covariance matrix.

The optimal estimate '& of the optimal N-length weighting vector is given by [21

(1)

where

i. = (flX ffI (2

Equations (1) and (2) are essentially the SMI algorithm for computing the matched filter, or Weiner
weights.

3

ADAPTIVE
-MATCHED
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KARL GERLACH

This optimal estimate is then applied to another temporally independent set of data called the
primary input data. The primary input vectors are of length N and their elements are assumed to be
temporally independent. Let

x = candidate primary input data vector of length N;
xl = Ith MLD primary input data vector of length N;
L = number of MLD primary input data vectors; and
T = MLD threshold constant.

The MLAD rule is given mathematically as

HI
H 2 > 2 (3)

1w xj C T E 1w x~,I(3
H0 1=1Ho

where 1 denotes magnitude, Ho is the hypothesis that no desired signal is present, and H1 is the
hypothesis that a desired signal is present. Note that with this detector, the standard CFAR procedure
of normalizing the candidate primary test statistic is by the average of the estimated power of the
other primary test statistics (i.e., 1 /L has been incorporated into T). The probabilities of false alarm
and detection probabilities are defined as

PF=Prob ;I{ H X 1 2 > L I VX! 12 I Ho (4)

and

PD = Prob f|&H x)2 > T # , I 1xl2 J HIj[ (5)

We now introduce a matrix transform on the input channels that does not change Pi) or PF, but
greatly simplifies the analysis. Let R, be the N x N covariance matrix of the input channels.
Assume that the matrix is nonsingular. There exist an N x N matrix A [21, which (1) spatially
whitens the N input channels, (2) normalizes each input channel to have noise power equal to one,
and (3) places all of the signal energy in the first channel such that the transformed signal vector s is
given by

s A As (u, 0, 0,.. 0 )T, (6)

where a represents the transformed desired signal voltage.

Define

Z = AX N X x K matrix of transformed input data. Each sample is temporally
and spatially independent with variance equal to one;

4
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'v. Av. = Itr rrfjnrsn.<A NF fl nmrjirnnr Aatt vprtnr; nnd

z = Ax = candidate primary input data vector.

It is straightforward to show that the optimal estimate w of the transformed data is given by

w = (A) 1 &v. (7)

Figure 3 shows a schematic of the transformed MLAD rule. It is given by

H1

|wHz| 2 < T , | w zt 12. (8)

H0

III l lX l II

Xi l _. XN-t

A (whitens, normalizes, signal in
1st channel

'¢ 2 'N
…--- - - --- -- -…z

X 'C ,...) '- * wf-4' * ADAPTIVE
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _MATCHED

j _- -FILTER
A A

I I -I-~~~~~~~~~~~;

I IF GREATER, CHOOSE H1

ELSE, CHOOSE Ho

Fig. 3 - Transformed mean level adaptive detector
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By substituting for w, z, and z1 with (A"H)-' w, Ax, and Ax/, respectively, we find that Eq. (3)
results. Hence, the equivalence of the two decision rules is proven. Thus

L

PF Prob |wH z| 2 > T E IwH Z[ | Ho< (9)

and

PD Prob I wH Z (2 > T, (w H Z{ ( 2 HIu| (10)

VC see lm t. \O) tUhLt anl a1Lta1ly sLcd1l1g actoUI JIIUiLJtipyiJU LiUJM sUd L e LIR UCCIbEJ1i rIul

does not change the rule. Henceforth, we set the first element of w equal to one and define

w = (1 , w2 , W3, . ., W)T. 1

Finally we note that as K- co, then w -O. , = 2, 3...., X - 1. This is so because the
Weiner weights are effectively achieved after the transformation by A [4]. Hence the adaptive
weights computed after this transformation are perturbations about their optimal values, which are
zero.

3. PROBABILITY OF FALSE AL.ARM

In this section, we derive PF and show that the adaptive detection scheme discussed in Section 2
does indeed exemplify the qualities of a CFAR processor, i.e., the PF is independent of the external
noise environment. To this end, define

P (F I w) = probability of false alarm conditioned on knowing w.

WH
(12)

and
WH ZI

Ve = 1,2, ... , L, (13)

where f/wjj = w. For [(wil > 0 and under Ho, it is straightforward to that v and
v1, / = 1, 2, .. . L, are IUD-circular Gaussian processes with zero mean and variance equal to one.
The deCision rile ie Oran hi, flc. (N) &aon ha rVAeirwfln no

H1

H< T v I (14)

Ho

6
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For the above decision rule, it is welt known [81 that

Prob j(v 1 2 > TI - (1 +T

Thus

P (F I w) = I T
ki r i1 I

and

PF - (I + )L (I T

(15)

(16)

(17)

We note that PF is a function only of the arbitrary threshold T, and L is the number of MLD samples.

4. DETECTION PROBABILITY

Here we derive the detection probability PD associated with the MLAD. Under H 1,

z = (u + ni, n2, n3 ,--- ,nNi)T, (iS)

wheLUC n' k" (r IL, r. - - ,rtN-I) is a1 auuJtiVL .J4au4&iaIu nuiYU v WID L'wDU zero O^JIU Latd eltL
variance equal to one and u is the desired signal voltage through the matrix transform A. Under H1
define

PJ jVWT, i U I Ut'UAAUIIo Uuitujiujt on MIoUW1L1g W anu U.

Note we are assuming that the desired signal is not present in the CFAR primary data vectors. Equa-
tion 13 defines v1, I 1,2, . . . L. Also set

YY z w s Hn
I ) _ 4 

1*1V~ 11WRt'tt
U +wH n

I+W 1t1

We set

(19)

(20)
uUO= 

11 11 I
ki 211

and

wH n
1X _11= l 

7

(21)
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Now v is a circular Gaussian process with a mean equal to u0 and variance equal to one. As before,
v/ are HD, circular Gaussian processes with zero mean and variance equal to one. They are also
independent of v.

The decision rule given by Eq. (8) can be rewritten as

u'o + v'(2 T I I Vj2.

ro

r = I uO + v'I ',

(22)

(23)

L
z = T I 1vfl1.

i =1
(24)

Let the unknown phase of u be uniformly distributed between [0, 2r). Under the UD Gaussian
assumption, Ref. 1 shows that the probability density function (PDF) of r, denoted by pr(r), is given
by

p(r) e -(r+ [ ) 1 (2 u E V ), (25)

where I( is the modified 0th-order Bessel function of the first kind. The distribution of z is the X2
distribution with PDF given by

Now

(26)

(27)

pz Z) = T (LL I) L-i -/

Prob (r > zI = i0 , p, r) pz(Z) dr dz,

and

Define

PtD l w, ua = P tD I uo = Probtr> zl.

I1wII2

(28(a))

A

(28(b))

8

Set

and
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where the quiescent (K = co) output noise power of the Ist channel ZI is equal to 1. Thus,

uo = t Uqo. (29)

Brennan and Reed [31 showed that q0 has the following PPF.

K! N 2 K-NlC
pq, qo0) =(N - 2)! (K - N ± 1)! (I - q0) - q0 N+I Os 'msl (30)

Set q - . It is straightforward by using elementary probability theory to show that

Pq (q) = K ! - I-q2)N-2q 2(K -N)-i-I, 0 - q~l (31)
2(N -2)!(K -N + I)!

Thus the joint PDF of j a [ and q, which are assumed to be independent random variables, is
given by

P J. 1s46\U I q?) = p (I u1 J3pq(q)- (32)

At this point, we note that

P(L w ju[=P [ [ uuo[)=P [ [u[,q). (33)

Thus knowing the PDF of [uo 1 is not necessary since we have the joint PDF of P q u4 [[ q).

Finally the detection probability is found as

=Ls P(D[ [i, q)p 9 ([u[ q) dqd [, ' (34)
or

PD = Jc 1 jqj '0 l2 U 2 SY (35)

L - yIT q2lN-2 q2(K- pN) -- I t U [)dr dX d d u

where

K! _ I

2(N-2)! (K-N t 1)! T (L- -) (36)

We note that the signal parameters are contained in P u([t [) and that the power of [t l is com-
puted by using the input signal parameters, the desired signal vector, the matrix transform A, and the

9
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fact that the output noise power residue of the matched filter (K = m) is normalized to one. The
quantity j[ 12 is actually the output signal-to-noise ratio of the matched filter for a constant input sig-
nal amplitude.

5. DETECTION PROBABILITY. RAYLEIGH SIGNAL

In this section, we derive an expression for PD for the special case when the envelope of desired
input signal v is Rayleigh distributed. We define v1 as done by Eq. (13) and v as done by Eq. (19).
Implicit in the assumption that I a I is Rayleigh distributed is the fact that u is a circular Gaussian
process with zero mean and variance equal to a2. Thus v is circular Gaussian with zero mean and

I~I2a2 _ _F + 1. (37)

The decision rule given by Eq (8) can be rewritten as

Hi
V 2 C T VI 2 . (38)

H0

We define z as in Eq. (24) and

r [V 2 (39)

The PDF of r is given by

pI(r) = ± -r/ (40)
2 e -a(

Steenson [8) shows that for the assumed PDF,

Again set q0 = I /[[w[92. Thus Eq. (41) becomes

P (D {w) = P (Dj g) L' + + 1 (42)

We define

( g -J2 = optimal signal-to-noise power ratio of the test staistic zl .

Opt

10
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We note that (SIN)%p, is also the optimal signal-to-noise power ratio of the output of the matched filter
where the optimal linear weight is given by w0op -k, R s. The PDF of q0 is given by Eq. (30). It
follows that

D (N-2) (K- N + 1)! fo +-- * m

By using Eq. (17),

This expression substituted into Eq. (43) results in

q0 + aL
Lqo + b

(1 - qo)-2 qK-Nt dq0,

(46)

(47)(Na - 2)! (K - Nb r= ^] PF , 

K!
(N - 2)! (K - N + 1)!' (48)

Furthermore, if we set q1 = q0 + b, then

PD = C (q1 + a - b)L (1 + b - qj)N- 2 (q 1 - b)K-N+i q 1 dq- .
b (49)

If we e-xpndnf the- inti,.ranni of thie above integra] b1y -- in #uhae r_.1-ua -llsafurte

expansion in term of powers of q results. These may be integrated yielding the following:

PD = (- 1)L+K+N+l C & (I + b)N- 2 bKN+1

L N-2K-N+j (1 FN4' FKN+l FN + m + n - L h)

10=hi=0 m=0 n m a' (I + b)n btm (50)

11

T

I+ I

(1 - qo)N-2 qK-N+ldo( (43)

T- =pglL -j

where

PD = C s

(44)

(45)

and
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where (:) is the binomial coefficient of its arguments,

- II
ae L NI;Pr L - 1), (51)

opt

and FP-, ) is a fnction defined as

(I + b)r9 - -b i

F(i, b) = q+ dq1 = i l - (52)

We note that as K - Xo, then qO - 1. Thus the quiescent PD denoted by P1) is given by

p) _[1 + TI (53)
am +I

m in

By using Eq. (44) and (S/N)0 p, = au /on, then

Po K ) I + J (54)

6. RESULTS

In this section, we present some results on the detection probability P0 of the MLAD vs the
independent parameters: the probability of false alarm PF; the steady-state signal-to-noise output
power ratio of the matched filter (SIN),,,,; the number of independent samples per channel K used to
calculate the sample covariance matrix; the order of the adaptive matched filter N; and the number of
samples L used to set the mean level threshold. We found that the solution for PO given by Eq. (50)
though exact is numerically unstable for computer evaluation. Hence the integral solution given by
Eq. (43) was evaluated.

We set K = MN where M is a positive integer and use M as an independent parameter called
the order factor. Plots of P0 vs (S/N)0 p, and M for PF = I10s, 10j- and various N are shown in
Figs. 4 through 13. We note that for these figures, we have set L = K - 1. This might be a logical
choice for the number of samples used to set the threshold since all the samples except the candidate

12
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primary input data in a given batch are used to set the threshold. Note that as M - co. then
L- oo,and that lj

± jI1 + {- N }P,

P2} = PF (55)

Kelly 15] defines the (SIN) loss of an adaptive detector as the difference of required (S/N) to
obtain a given PD between a steady state (M = m) detector and transient state (M finite) with all
other independent parameters being equal. Define M3dB to be the order factor such that (S/N) loss is
nearest to 3 dB. We make the following observations from Figs. 4 through 13.

(1) The MLAD is slower to converge to its optimal PD (M = xc) for lower ordered matched
filters. For example, for most PD'S (0.1 to 0.9), PF = 10-6, if N = 2, then M3dB = 6;
if N = 10, then M3dB = 3.

(2) There are diminishing returns in convergence by using a larger order factor.

(3) Convergence slows for decreasing PF- For example, for most PD (0.1 to 0.9) and N = 2,
if PF = 10 6, M3 dB = 6, if PF = 10-10, M3dB = 10.

We note that these trends were also observed by Kelly 15] for his adaptive detection algorithm.

Since, in general, the number of samples L used to set the mean level detection threshold is
arbitrary, we present two sets of curves (Figs. 14 and 15) where L is not related to K. For these
curves, L = 10. Note that Eq. (54) and not Eq. (55) is used to evaluate Pij.

l5 20 25

SIN OPTIMUM (dB)

Fig. 14 - PF1 vs (SIN), for PF = 1.D-6, N = 2, L = 10
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7. SUMMARY

Convergence results for a mean level adaptive detector (MLAD) have been presented. The
MLAD consists of an adaptive matched filter (for spatially correlated inputs) followed by a mean
level detector (MLD). The optimal weights of the adaptive matched filter are estimated from one
batch of data and applied to a statistically independent batch of nonconcurrent data. The threshold of
the MLD is determined from the resultant data. Thereafter a candidate cell is compared against this
threshold. Probabilities of false alarm and detection were derived as a Function of the threshold fac-
tor, the order of the matched filter, the number of independent samples-per-channel used to calculate
the adaptive matched filter weights K, the number of samples used to set the MLD threshold L, and
the output signal-to-noise power ratio of the optimal matched filter. A number of performance curves
were shown and discussed. It was shown for the particular case when L = K - 1, the MLAD is
slower to converge to its optimal value for lower-ordered matched filters, there are diminishing
returns in convergence performance when using more independent samples per channel, and conver-
gence slows for increasing probability of false alarm.
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